
J .  Fluid Mech. (1980), vo2. 97, part 1, pp .  1-26 

Prinkd in &eat Britain 

1 

Spin and angular momentum in gravity waves 
By M. S .  LONGUET-HIGGINS 

Department of Applied Mathematics and Theoretical Physics, 
Silver Street, Cambridge, England, and 

Institute of Oceanographic Sciences, Wormley, Surrey 

(Received 10 April 1979) 

The angular momentum A per unit horizontal distance of a train of periodic, pro- 
gressive surface waves is a well-defined quantity, independent of the horizontal 
position of the origin of moment. 

The Lagrangian-mean angular momentum A, consists of two parts, arising from 
the orbital motion and from the Stokes drift respectively. Together these contribute a 
positive sum, nearly proportional to the energy density (when the origin is taken in 
the mean surface level). If moments are taken about some point P not a t  the mean 
surface level, the angular momentum will differ by an amount proportional to the 
elevation of P. There is just one elevation for which the Lagrangian-mean angular 
momentum about P vanishes. This elevation is called the level of action. For in- 
finitesimal waves in deep water the level of action is a t  a height above the mean surface 
equal to l/2k, that is 1/4n times the wavelength. 

Just as for ordinary fluid velocities, the Lagrangian-mean angular momentum A, 
differs from the Eulerian-mean A,, the latter being zero to second order. The difference 
between 2, and A, is associated with the displacement of the lateral boundaries of 
any given mass of fluid. 

For waves of finite amplitude, an initially rectangular mass of fluid becomes ulti- 
mately quite distorted by the Stokes drift. Nevertheless it is possible to define a long- 
time average 1.t.B and to calculate its numerical value accurately in waves of finite 
amplitude. In  low waves, l . t . 2  is equal to 2,. Defining the level of action ya in the 
general case as l . t .z / I ,  where I is the linear momentum, we find that ya rises from 
0.5k-1 for infinitesimal waves to about 0.6k-1 for steep waves. Thus ya is about the 
same as the height ymax of the wave crests above the mean level in limiting waves, a 
fact which may account for why steep irrotational waves can support whitecaps in a 
quasi-steady state. The same argument suggests that Gerstner waves (in which the 
particle orbits are theoretically circular) could not support whitecaps. 

1. Introduction 
Certain integral properies of water waves, notably their momentum, energy, radia- 

tion stress and energy flux, are known to play an important role in the interpretation of 
surface wave phenomena, and have been studied recently as functions of the wave 
amplitude (Longuet-Higgins 1974, 1975; Longuet-Higgins & Fenton 1974; Cokelet 
1977). In this paper we draw attention to another property, less well known, which 
nevertheless appears to be associated with equally interesting phenomena, namely 
the angular momentum of a wave train about any given point. 
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Because the particles in a deep-water wave describe roughly circular orbits one 
would intuitively expect the wave train to possess, on average, a positive angular 
momentum, when considered from a Lagrangian point of view. As shown in $ 3, the 
orbital angular momentum of a wave train of speed c and amplitude a is indeed positive 
and equal to *pa%, to  second order. But the steady mean drift of the particles in an 
irrotational wave gives a negative contribution - ipa2c, so that altogether, for waves 
of small amplitude, there is a net positive angular momentum apa2c about any point 
in the mean level. 

The angular momentum about a point a t  any other level y will differ by an amount 
proportional to  y times the total horizontal momentum in the wave (the mean vertical 
momentum being zero). I n  particular there is one level about which the Lagrangian 
angular momentum vanishes. For waves of low amplitude this is at a height L/4r 
above the mean surface level, where L is the wavelength. It is suggested that waves 
must attain this height before they can support a whitecap in a quasi-steady state. 
It turns out that  in a steep, irrotational wave in deep water the wave crest does 
practically attain the necessary height (see figure 4 in $9) .  

The evaluation of the angular momentum reveals certain paradoxes, similar to 
those encountered in other water-wave phenomena. For instance the Eulerian-mean 
angular momentum is not second order but fourth order and therefore much smaller 
( Q  6). The difference is similar to that encountered with a simpler entity, the time- 
averaged velocity. Thus the Lagrangian-mean velocity in an irrotational wave is 
positive, whereas the Eulerian-mean velocity is precisely zero. The resolution of the 
paradox in the case of the mean angular momentum is discussed in $ 6 .  

We have quoted the value $pa'% for the Lagrangian-mean angular momentum in 
waves of small amplitude. For waves of finite amplitude it is found possible to define 
a long-time average of the Lagrangian angular momentum (see $ 8) and to calculate it 
precisely ($ 9). Numerical values are given in table 2. 

It is worth comment that the dimensions of angular momentum are the same as those 
of wave act ion (see $ 10). Thus although the two entities are quite distinct, the known 
conservation of wave action in weakly nonlinear wave interactions implies also the 
conservation of (Lagrangian) angular momentum. 

2. Angular momentum : general considerations 
Consider a periodic, irrotational gravity wave of wavelength L in water of uniform 

mean depth h, progressing with speed c as in figure 1. Let (x, y)  be rectangular co- 
ordinates with the origin in the mean level, the x axis in the direction of wave pro- 
pagation and the y axis vertically upwards. Denoting by (u, v) the horizontal and 
vertical components of the velocity, we may choose a frame of reference in which the 
mean value of u is zero a t  some given point below the wave trough. Thus we have 

u = 0, (2.1) 

where a bar denotes the average over one wavelength. If q4 is the velocity potential 
((u, v) = Vq4) then it follows that 

[q4lj.=, = 0 (2.2) 

so that if (2.1) is true a t  one level y it is true a t  all other such levels. 
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FIQURE 1. Definition sketch, showing co-ordinates and boundaries of the fluid. 

Now consider the angular momentum of the fluid contained in the space Q between 
the free surface y = ys(x, t ) ,  the bottom y = - h  and two curves x = f ( y )  and 
x = f ( y )  + L separated horizontally by a distance L. Let LA(x,) denote the angular 
momentum about an arbitrary point (x,, 0) in the mean level: 

m m  

LA@,) =JJ [yu- (x-x , )v]dxdy .  
n 

Clearly 
a,- 

The last integral represents the total vertical momentum over one wavelength, which 
must vanish identically. Hence A is independent of xo and we may write simply 

LA = /In (yu  - xw) dxdy 

for the angular momentum about any point in the mean surface level. Clearly A is 
the mean angular momentum per unit horizontal distance. 

However, A may depend upon f. Thus if x =f , (y )  and x =f,(y) are two distinct 
bounding curves, then the difference between the corresponding angular momenta 
LA, and LA, is 

(YU - X V )  dx dy - ( yu  - X V )  dx dy, (2.6) Ssn; ssn,, L(A,-A,) = 

where Q,, is the region bounded by the curves x = f , (y) and 5 = f , (y),  and Q;, is the 
region bounded by x = f l ( y )  + L and x = f , (y) + L. But by the space-periodicity the 
motion in Q;, is exactly similar to the motion in Q12. So we can transform i2i2 into 
a,, on replacing x by (z - L)  and (2.6) becomes 

r r  
L(A2-A1) = JJ ( - L v ) d x d y  

nia 
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or 

A A = A 2 - A  - 

The two values of the average angular momentum thus differ by precisely the total 
vertical momentum contained in the zone between y = ys, y = - h and the two curves 
x = f,(?/) and x = f d y ) .  

3. The Lagrangian-mean angular momentum 

given as functions of a, /3 and the time t by 
The co-ordinates (2, y )  of a particle with fixed Lagrangian co-ordinates (a, /3) are 

(3.1) 

cosh 2k(P + h) 
2 sinh2 kh 

x = a-a  'Osh k(P+ h, sin (ka - a t )  + a2k 
sinh kh 

sinh k(P + h) 
sinh kh 

cos ( ka -  at). y = P+a 

In  (3.1) the terms of order a represent the horizontal and vertical displacements of the 
particle from its mean position, while the term in a2k represents the horizontal dis- 
placement due to the Stokes drift. Terms of higher order are neglected, as for example 
the Doppler-shift in frequency due to the mean drift, which is a function of p. To the 
same order, the bottom is given by p = - h and the free surface by /3 = 0 (more 
accurately /3 = ia2k). 

Corresponding to (3.1) we have the particle velocities 

(3.2) I cosh 2k(P + h) 
2sinh2kh ' u = a a  'Osh k(P+ h, cos (ka  - at) + a2ka 

v = a a  

sinh kh 

sinhk(P+ h) 
sinh kh 

sin (ka - a t ) .  

We may substitute now into (2.5) and carry out the integration, noting that 

-- a(z' ' I  - 1 + O(ak)2 
PI (3.3) 

so that to second order dx dy may be replaced by da dp. Hence 

cosh 2k(B + h) 
2 sinh2 kh 

+ a2 k a p  
sinh 2k(P + h) 

sinh2 kh 
= 1; A (a2a 

- aaa sinh '('+ h, sin (ka - a t )  
sinh kh 

(3.4) 1 ac ( k 
= L &a2c - &a2c + - cos at , 

where c = a / k y  the phase speed. The first two terms in the bracket arise respectively 
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from the elliptical motion of the particles and from the mean drift velocity or mass 
transport. Altogether then we have for the Lagrangian angular momentum 

(3.5) 

B, = (3.6) 

ac 
k A ,  = aa2c+- cosat 

and on average 

correct to second order. 

(3.4). Taking mean values in (2.5) we have 
An alternative but interesting method avoids the specific evaluation of integrals in 

2, = g / / n ( y u - x v ) d x d y .  (3.7) 

Working to order a2 as before we can set x = a + / u l d t ,  y = p + / v l d t ,  u = ul+us, 
where (ul, wl) denote the first-order particle velocities and us is the mean Stokes drift 
velocity. It was shown in Longuet-Higgins (1953 b )  that 

a y  
aY ' 

u,3 = - 

where Y is the stream function for the mass-transport velocity, namely 

Y = u1 vldt.  J- 
So, dropping the suffixes, we have from (3.7) 

-- 
A, = 1: (u! v dt - v / u  dt + y g) d y  . (3.10) 

Using the general property that if P and Q are any two periodic quantities then 

P Qdt+Q P d t  = 0, J J  
we have 

AL = J - I h 2 u J - v d t d y + [ y Y ] O h -  s"h Y d y .  

(3.9) 

(3.11) 

(3.12) 

From (3.9) it is clear that Y = 0 when y = -h .  Hence 

2, = J-IW d y - S r , Y  d y  = $"hY dy .  

Now we can write 

(3.13) 

(3.14) 

where $ is the first-order stream function. The motion being progressive we have 
a/ax = - ( l /c)  a/at, and therefore 

1 3 p  1 a -  - - $2. y=;+-= ay 2cay 
From (3.13) we have then 

(3.15) 
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and using the well-known expression 

cos (kx - at) sinh k( y + h) 
sinh kh y? = ac (3.17) 

we find immediately 

as before. 

and the drift velocity contributes minus one times, the final answer. 

AL = fa% (3.18) 

From (3.13) it is already obvious that the orbital motion contributes two times, 

4. Rates of change: the dynamical equations 

the equations of motion in the form 
We can also account for the first-order time-dependent term in (3.5). Starting from 

where D/Dt denotes differentiation following the motion 

and where 

~a a a _ -  Dt --at+-+- 
ax ay? 

P = p + q y ,  ( p  = 1)' 

let us cross-multiply equations (4.1) by x and y.  This yields 

D - (yu-vx)  = - 
Dt 

(4.3) 

(4.4) 

Now let each side be integrated over the area Q ( t )  occupied by a moving mass of fluid 
with boundary B(t).  This gives 

(4.7) 

(4.8) 

we may transform the right-hand side of equation (4.5) by Green's theorem into 

the integral being taken clockwise round the contour B. Hence (4.5) becomes 
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FIGURE 2. Sketch for the physical interpretation of the pressure integral in (4.11). 

where P is given by (4.3). Integration by parts now gives 

(4.10) 

where r denotes (x2 + y2)+. 
Consider the interpretation of equation (4.10). If  8 denotes the angle between the 

radius vector OP and the tangent PT to the boundary of B, as in figure 2, then we have 
dr = ds cos 8. Therefore, if N is the foot of the perpendicular from 0 to the normal P N  
we have 

jBprdr  = I E p r ~ o s O d s  = ONpds .  (4.11) 

Hence the first part of the right-hand side of (4.10) represents the total moment 
about the origin of the pressure forces applied at  the boundary. 

ss, 
The second part of the integral on the right-hand side of (4.10) can be written 

(4.12) 

that is mg5, where m is the total mass (or volume) contained in i2 and 3 is the hori- 
zontal co-ordinate of its centre of mass. This then is the moment about 0 of the total 
gravitational force when applied a t  the centre of mass of the fluid. Equation (4.10) 
tells us that this is also equivalent to a normal pressure gy applied a t  the boundary. 

Let us apply (4.10) to progressive, periodic waves in deep water. The integral on the 
right-hand side may be written 

-IE@ + gY) (x a k  + Y dY). (4.13) 

In  the part of the integral involving dy let us apply Bernoulli’s theorem for steady 
irrotational flows: 

P + 9Y = 3(c2 - P2), (4.14) 
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where q denotes the local particle-speed in a reference frame moving with the phase- 
speed c. Substituting in (4.13) we see that the contribution from the term +c2 vanishes. 
The term 

(4.15) 

has four parts. The contribution from the horizontal bottom section (dy = 0 )  vanishes. 
The contributions from the two sides cancel each other, and at  the free surface since 
p = 0 we have iqz = g(yo - y), where yo is a constant. So this part of the integral gives 

(4.16) 
X l + L  

9(Yo-Y)Y’Y = 9[ikYoY2-+Y3125i: = 0 Jx=z, 
by the periodicity. So (4.13) reduces to 

(4.17) 

The bottom section of the contour yields zero.? The two side sections together yield 

Finally, the free surface, where p = 0, yields 

(4.18) 

(4.19) 

Collecting together all the non-vanishing contributions to (4.13) we have from (4.10) 

(4.20) 

The terms on the right-hand side must together account for the time-dependence of 
the angular momentum (3.5). 

TO check this, note that in the first and third integrals in (4.20) the range of x is 
O(a), hence the integrals are O(a2). In  the second integral, however, we may set 

ys = a cos (kx - d) 
to order a, giving 

- = -- ’ A ~  at sin at 

(4.21) 

(4.22) 

in agreement with ( 3 4 ,  since ac + g. Thus it appears that the fluctuation in angular 
momentum is due primarily to an integral along the free surface, representing the 
varying moment about the origin of the total gravitational force acting on the dis- 
placed fluid. 

(see Longuet-Higgins 1953 a). 
t This is because at infinite depth the pressure becomes hydrostatic, in EL progressive wave 
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5. Application to breaking waves 
We have so far considered the mean angular momentum density (a.m.d.) about an 

arbitrary point in the mean surface level y = 0. If we wish to calculate the a.m.d. 
about a point at some other level, say y = yo, we have clearly 

n r  

where I is the horizontal momentum density: 

From (5.1) and (5.2) we see that in general 

A(Y0) = A(O)-YoI. (5.3) 

Ya = A(O)/I.  (5.4) 

Now there will be one value of yo for which A(yo)  vanishes, namely 

Let us call this the level of action of the wave train. It is in fact the level at  which we 
would have to add or subtract a small amount of linear momentum if we were to 
maintain the wave form constant, save only for a small increase or decrease in the wave 
amplitude. 

A simple analogy may make this clearer. Consider a uniform circular disk of radius 
a rolling along a horizontal plane surface with angular velocity B,  as in figure 3. Taking 
the density per unit cross-sectional area as unity, the total mass of the disk is 

and the angular momentum of the disk about its centre is 

A = IJr2c.rdrde = gna4c. 

The horizontal speed U of the centre of mass, however, is equal to ac,  so that its linear 
momentum is 

I = Mu = n a 3 ~ .  

Therefore the point P about which it has zero angular momentum is a t  a distance ya 
above the centre, where 

(5 .8)  

This also is the centre of impact, at  which a horizontal impulsive force would have to 
be applied to start the disk rolling from rest, or to stop it dead, without slipping or 
bouncing. 

If we imagine a thin slice of the disk, of uniform thickness, shaved off and concen- 
trated to a point at  P by purely internal forces, it  could then be released and would fly 

(5.7) 

ya = A / I  = $a. 
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P Level of action P - -  
( a )  

( b )  

P 

FIUURE 3. Comparison of (a) a steep progressive wave to  ( b )  a rolling 
disk or ( c )  a bowling hoop. 

off horizontally. The only effect would be to slow down the rolling motion of the disk 
by a small amount. 

In  the case of a circular hoop, the corresponding point P would be on the circum- 
ference, at the highest point. 

Now in the case of a breaking wave, a mass of fluid is thrown forwards at a level near 
the crest. This is often observed to form a whitecap and to settle down into a quasi- 
steady state, with the wave progressing almost unchanged in form save presumably 
for a steady decrease in wave energy. Our previous cslculations suggest that this 
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would be imposeible if the whitecap were not close to the level of action of the wave. 
This in turn implies that the height of the wave must be equal to, or slightly exceed, 
the level of action. 

Now for low waves we have A(0)  = $a% while I = E/c  = $ga2/c, and so from (5.4) 

ya = c2/2g. (5.9) 

Making use of the linear dispersion relation 19 = (g/k) tanh kh we find 

1 
2k 

ya = - tanh kh. 

I n  deep water this reduces to 
ya = l/2k = L/4n. 

(5.10) 

(5.11) 

I n  other words the level of action is about one-twelfth of a wavelength above the mean 
surface level. Obviously it is impossible for low waves to attain this level, which may 
explain why such waves do not support whitecaps. The values of ymax and ya for 
waves of finite amplitude will be calculated in Q 8 and 9. 

I n  shallow water (5.10) reduces to 
Y a  = $h (5.12) 

suggesting that steady whitecaps will not exist when the wave height is less than about 
one-half of the undisturbed depth h. 

6. The Eulerian viewpoint: evaluation of AE 
I n  this section we shall be concerned with the Eulerian angular momentum 

where now R, is not a volume moving with the fluid but a fixed space or area independ- 
ent of the time. I n  equations (2.3) to (2.5) we may conveniently chooscf(y) = xo, a 
constant, so that the lateral boundaries of the region are the vertical planes x = xo and 
x = xo + L. We may then consider the Eulerian-mean angular momentum 

LA E -  - ["+" [" ' (yu-xv)dxdy ,  
J X O  J - h  

where a horizontal bar denotes the time-average. I n  this expression we may take 
x ,  = 0 without loss of generality. 

Note first that  for a progressive wave 

precisely. Because v is a function of ( x  - ct) and since the lateral boundaries are fixed, 
we can reverse the order of averaging with respect to x and t ,  that is, we may integrate 
first with respect to y and t keeping x fixed. But since the total vertical momentum 
vanishes it appears that  for fixed x 

vdy  = 0, 

from which (6.3) follows. I n  other words the contribution of the vertical velocity to 
the Eulerian-mean angular momentum is zero. 
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We have then to evaluate 

- h  

Denoting by $ the velocity potential and transforming the integral by Green's theorem, 
we have 

where the line-integral is taken anticlockwise round the boundary B.  Now the integral 
along the bottom y = - h vanishes, since dy = 0. The integrals along the two sides 
cancel by periodicity, and we are left with 

after integrating by parts, since [&ys $1: vanishes by (2.2): Equation (6.7) shows that 
2, must be at least third order in the wave steepness a. 

To be more precise, it will be found convenient to introduce the velocity potential 
CD and stream function Y of the motion relative to axes moving with the phase-speed 
c.  Thus we write 

and } 
CD = $ - C ( X - C C t )  

Y = $-c(y+h), 

where $ and $ are the velocity and stream function in the original frame of reference. 
The arbitrary constants have been adjusted so that \r and $ both vanish on the 
bottom y = -h .  Also we choose d) to vanish at  a wave crest. In  the new frame of 
reference the flow is independent of the time. Since 

d$ = dCD+cdx (6.9) 

and 0 runs from 0 to - CL as x runs from 0 to L we obtain 

LA, - = 'loL $Ys" cdx- J-cL~y:dCD, 0 

The first integral is clearly related to the potential energy density 

v = +gy:ax loL 
so we can write 

(6.10) 

(6.11) 

(6.12) 

Now since the motion is periodic and irrotational, x and y may be expressed as 
Fourier series in CD in-the usual way: 

03 cosh ( n k Y / c )  
n= 1 sinh (nkYJc)'  

Q) sinh ( n k Y / c )  
, / -I  sinh (nkY,9/c) 

x - ct = - CD/c + 

y + h = - Y/c + 

a, sin (nk@/c )  

a, COB ( n k @ / c )  
(6.13) 
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where k = 2n/L and Y, is the (constant) value of Y a t  the free surface. We note that 

uc aur 
'€", = j W h ~ d y  = / r h  ( u - c ) d y  = I - c h ,  (6.14) 

where I is the horizontally averaged momentum or mass-flux, and h as before is the 
mean undisturbed depth. Hence 

Y,/c + h = I / c .  (6.15) 

The free surface is therefore given by 
a, 

y, = - I / c +  a,cos (nk@,le) 
n= 1 

(6.16) 

and the crest-to-trough wave height is 2a, where 

a = a,+a,+n,+ .... (6.17) 

Substituting for yc in (6.12) we obtain finally 

(6.18) 

Consider for example the case of waves in deep water. In  this case we have, to 

a, = a, a2 = a2k (6.19) 
order a2, 

and 
v c  - = &a2c, 
9 

I = &a2ck. 

Hence 
A, = 0 

(6.20) 

(6.21) 

to order a2. Calculations carried to higher order show that in deep water 

2, = 4a4k2c. (6.22) 

To reconcile the differing values of the Eulerian angular momentum 2, and the 
Lagrangian angular momentum 2, we note that, at  the instants crt = 0,n when the 
boundaries a, and R ( t )  of the two masses of fluid coincide, the angular momenta 
contained in R, and Cl must obviously be the same. Rut when crt += 0, n the lateral 
boundaries of R(t) which are given by ka = 0,2n in (3.1) do not concide with x = 0, L ;  
in fact we have x = f ( y ) , f ( y )  + L ,  where 

(6.23) 

The resulting difference in the angular momenta is given by equation (2.8), with 
f, = 0 and f2 = f. To order a2 this is simply 

0 

- h  
A A = /  -vSxdy  (6.24) 

where v is the vertical velocity: 

(6.25) 
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and 6x is the width of QI2, that is to say f (y) approximately. All together we have 

O das inh  2k(y+h) 
AA =I sin2 d dy 

-h  2sinh2kh 

= &a2c sin2at. 
On average, then, 

AA = &A, 

which agrees with the calculated difference between A, and 2,. 

(6.26) 

(6.27) 

7. Angular momentum flux 
The dynamical equation (4.10) was seen to apply to a fluid mass a ( t )  moving with 

the fluid. Consider now the fluid contained in the region Q,, fixed in space and momen- 
tarily coincident with Q(t). From geometrical considerations it is clear that 

where u, denotes the outward normal component of the fluid velocity at  the boundary 
B.  The last term in (7.1) represents the flux of angular momentum across B.  Since 

uads = udy-vdx 

LF, = j B  (yu - xv) (u dy - w dx). 

it can also be written 

If we are considering a mass of fluid contained in a region a*, part of whose boundary 
is fixed and part moving with the fluid, as in the calculation of A,, then the contour 
integral in (7.1) is to be taken only along the fixed portion B* of B. 

The flux across a vertical plane x = constant is given by 

F = -1" (yu-xv)udy. 
- h  

17.4) 

To evaluate the mean value of F during one wave period we may write x = 0 and find, 
to second order, 

yu2dy =A,.& 1+- ( smh2 k2h2 kh 1 ' $'=-lo - 
- h  

(7.5) 

where A, is given by (3.6). Both in deep water (kh 9 1) and in shallow water (kh 4 l), 
the factor multiplying A ,  reduces to the linear group velocity 

cg = *c 1+- ( sinh 2kh 

but not at intermediate depths. 
The explanation lies in the fact that the injection of angular momentum into the 

waves depends not only on the flux across vertical planes but also on the moment of the 
gravitational forces in the interior and the moment of the pressure at  the bottom. The 
combined contribution from these forces does not vanish in general, and particularly 
not near the'front of an advancing wave train. 
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8. The long-time average of AL(t) 
In  Q 3 we found the time average of the Lagrangian angular momentum on the 

assumption that the fluid displacements were of order a, and before the drift velocity 
had carried the particles far from their original positions. We now investigate what 
happens over a long period, when the profile of a line of particles, originally vertical, 
has been radically distorted by the mass-transport velocity. In  finding an answer we 
shall incidentally arrive at a satisfactory definition of the Lagrangian-mean angular 
momentum for waves of finite amplitude. 

In  figure 1, let AL( t )  denote the angular momentum of the fluid mass which at  
t = 0 was contained between the two vertical planes z = 0 and L. As in $ 2  we have 

AL(t) = AL(O) + AA, 
where 

and Q12 is the complementary volume to Q12; the integral of v over the whole volume 
(Qlz+ Q12) must be zero. In (8.2) we now write 

dxdy = q-2ao dYP, J 
where q is the particle speed in the steady motion referred to axes moving with 
horizontal velocity c. This yields 

where yo and y1 are the values of y on x = 0 and on the left-hand boundary of Q12. 

We now propose to investigate the long-time average 1.t. AA. Since the particles 
move along streamlines Y = constant in the present frame of reference, the order of 
the time-averaging and of the integration with respect to Y can be reversed, and so 
from (8.4) we have 

1.t. hA = ( y  - yo) a. (8.5) J- 
But if ds denotes any element of a streamline we have q = ds/dt = d@/ds and hence 

at = q-Ids = q-2ao. 
It follows that 

where T is the orbital period, namely the time taken for a particle to travel one complete 
wavelength along a streamline: 

J o  J o  
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Note that T is a fdnction of Y. In  fact (c - L / T )  is the local mass-transport velocity 
(Rayleigh 1876). From (8.7) and (8.8) we have 

In  the first integral it is convenient to write y-go = (Y- Y )  - (yo- Y ) ,  where Y is 
some function of Y? at our disposal, and then (8.9) becomes 

= / ( y -  Y ) q - 2 d @ / / q - 2 d @ - ( y o -  Y ) .  (8.10) 

This expression can now be substituted in (8.5). It must be emphasized, however, that 
the time-averaging process applied strictly in only two cases; first, over a small integral 
number of cycles, in low waves such that all terms smaller than ( ~ k ) ~  are negligible; 
secondly, over times such that typical particles have been carried many wavelengths 
from their original position. We see that in this case convergence towards the final 
value will be more rapid for waves of higher amplitude. 

For simplicity consider waves in deep water, when 

(8.1 1)  1 
m 

n= 1 

m 

n = l  

x-ct = - @/c- x ansin (n@/c) e-ny/c, 

y + H = - Y/c + x a, cos (n@/c) e-ny'c, 

the wavelength L being taken as 2n, so k = 1, and the free surface being given by Y = 0. 
To make the mean level zero we must take 

Straightforward claculation now yields 

where 

Hence 
b o = l ,  b n = n a n ,  n = l , 2 , 3  ,.... 

(8.12) 

(8.13) 

(8.14) 

Denoting these two sums by Z and Z;' respectively, we have from (8.10) 

Y - Y O  = Z/Z'- ( 3 / + H + Y / c )  

(8.16) 

(8.17) 
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Hence 

17 

(8.18) 

Now from (8.1), on taking mean values, we have 

1.t. A, = AL(0) + 1 . t . m .  (8.19) 

The initial value A,(O) is equal to AE(0)  and can be shown (see appendix A) to be given 

precisely. Substituting into (8.19), we obtain 

m - ‘vc 12 
l.t.A, = ---- Bc 2 a;+&, 

9 2c n=1 

where 

Q = Jm X/ZrdY .  
0 

To lowest order in the wave steepness we have 

and so 

giving 

b,  = 1, 
b, = a, = a, 
b2 = 2a2 = 2a2, 

Hence 
1.t. A, = & d c .  

(8.20) 

(8.21) 

(8.22) 

(8.23) 

(8.24) 

(8.25) 

(8.26) 

Remarkably, this is the same as (3.6) and (3.18), showing that, to order a2, the long-term 
average of the Lagrangian angular momentum is equal to the short-term average over one 
wave period. This is because the period of the motion, though notexactly the same for 
all the different particles, is very nearly so when the wave steepness is small. 

9. Numerical results 
For general values of the wave steepness ak the Fourier coefficients an can be most 

easily calculated by the method described in Longuet-Higgins (1978), and the corres- 
ponding Lagrangian-mean angular momentum 1.t. A, can be found from (8.21). From 
this in turn we can determine the level of action ya. 

Table 1 shows first some numerical values of c, ymax,  I ,  17 and V for representative 
values of the dimensionless wave amplitude a (k being taken as unixy). These were 
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a 

-00 
*05 
* l o  
*15 

*20 
*25 
-30 
*35 

-40 
.41 
*42 
.43 

a44 
-4431 

C 

1 .oooo 
1*0011 
1.0050 
1.0113 

1,0202 
1.0317 
1.0460 
1.0630 

1.0822 
1.0860 
1.0896 
1.0923 

1.0926 
1.0923 

31,. 
.oooo 
.0512 
-1051 
*1616 

.2212 

.2842 
-3517 
*4250 

-5079 
*5266 
-5461 
-5675 

.590 
-5966 

I 
-00000 
.00125 
.00497 
.01111 

.01955 

.03006 
,04226 
-05539 

.06750 

.06933 

.07068 

.07116 

.07026 
,0701 

T 
*ooooo 
.00062 
a00250 
a00562 

a00997 
-01551 
-02210 
a02944 

.03652 

.03765 
e03850 
*03887 

.03838 
a0383 

V 
*ooooo 
*00062 
.00249 
*00556 

*00977 
*01502 
.02110 
,02760 

.03350 
-03436 
-03498 
-03514 

*03464 
.0346 

TABLE 1. Speed, crest-height, momentum and energy of deep-water waves. 

calculated in the following sequence. First, c = l/Co, where C,, is the lowest Fourier 
coefficient C,, in the notation of Longuet-Higgin; (1978). Then 

(9.1) b, = C,/Co, n = 0,  1, 2, 3, ..., 
a, = bJn, n = 1, 2, 3, ..., 

and 
1 ”  

H = -  C a, b, 
2n=1 

from (8.12). 
Now it is easy to show, since 

(9.3) 

that for water of finite depth h 
I = ( Y s - Y h ) + c h .  

In  deep water, when Ys = 0 and (by (8.1 1)) 

lim ( y + Y / c )  = - H ,  
y-t-“ 

we deduce that 
I = c H ,  

(9.5) 

which gives us the fourth column in table 1.  Then setting CD = 0, Y = 0 in (8.11) we 
obtain 

For the kinetic energy we have Levi-CivitB’s relation 

T = gcr (9.9) 
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a 

.oo 
*05 
.10 
-15 

.20 
-25 
.30 
a35 

a40 
.41 
.42 
.43 

.44 
*4431 

S 

~00000 
.00124 
-00492 
~01086 

.01875 
*02811 
.03823 
.04799 

.05522 
-05595 
.05595 
,05588 

.05482 

.0527 

& 
~000000 
~000002 
.000025 
so00 128 

*000408 
.001003 
*002099 
.003904 

*006541 
a007132 
.007694 
.008 127 

.00810 
~0078 

Q 
*ooooo 
.00125 
a00495 
*01099 

-01919 
-02907 
.04020 
a05157 

*06106 
.06228 
~06487 
-06300 

.0619 
-0596 

& 
*ooooo 
.00063 
~00251 
*00568 

.01018 

.01602 
a02319 
-03148 

~03999 
*04144 
.04260 
-043 19 

.0427 
*0411 

TABLE 2. Angular momentum of deep-water -waves. 

Yo 

*50000 
.50125 
-50504 
a51147 

-52070 
.53300 
,54875 
-56846 

e59248 
a59765 
-6027 
.6069 

a608 
*586 

(Levi-Civit& 1924; equation (B) of Longuet-Higgins 1975), and lastly in table 1 

c u m  1 Q) n-1  

n=O m = l  n = 2  m=O 
V = - B H 2 +  C C avnavn+nbn+2 C C aman-mtn.  (9.10) 

I n  table 2 we show the corresponding values of S ,  AE, Q ,  1.t. 2, and ya, where 

a3 

S = Sc I: a:, (9.11) 
1 

A, = ( V - + H 2 ) ~ - & S  (9.12) 

and Q is given by (8.22), where 'c. and C' are the sums on the right-hand sides of (8.15) 
and (8.16). Finally we have 

I.t.A, = ( F ' - $ H 2 ) c + Q - 8  (9.13) 
and by definition 

ya = l.t.A,/I. (9.14) 

In  figure 4 the values o€ymax and ya are shown as functions of the dimensionless 
wave amplitude a. At small wave amplitudes we have of course ymax N a, but for 
larger amplitudes the increasing sharpness of the wave crests as compared with the 
wave troughs necessitates that y m a x  must increase more rapidly than a. For the steep- 
est waves, when a = 0.443 (Longuet-Higgins 1975), the value of ymax can be very 
simply determined through the relation 

ymax = +cz. (9.15) 

Taking c2 = 1.1931 we find ymax = 0.596. 
On the other hand the calculated value of ya, which for infinitesimal wave amplitudes 

equals 0.5, rises gradually until near the end of the interval of a, when (like the phase 
speed c )  it has a maximum followed by a slight downturn, Its final value appears to 
be about 0.59, very close to the final value of g m a x .  
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10. Discussion 
The first question raised by the preceding calculation is whether for the limiting 

wave in deep water Ymax and ya should be precisely equal. For this conjecture there is 
as yet no theoretical support. Admittedly, in a limiting wave, the contribution of the 
fluid near the wave crest to the two integrals in (8.9) becomes relatively important, 
since the fluid lingers in that area. More precisely, in the well-known Stokes corner-flow 
we have @ and Y proportional to r3, while q is proportional to d .  Hence in (8.9) the 
contribution to the numerator is O(r5) and to the denominator O ( d ) .  The quotient 
is therefore O ( r )  and on integrating with respect to Y in (8 .17)  we have a contribution 
O l d )  which is finite. Therefore the contribution to the angular momentum from the 
neighbourhood of the crest, though possibly important, is not necessarily dominant. 

The fact that in steeg waves ya 6 ymax has possible implications both for the 
generation and the decay of wind-waves. As pointed out in Q 5 it appears possible, 
in such steep waves, to increase or decrease the linear momentum by the application 
of a horizontal force at the surface without appreciably changing the level of action 
of the wave train. Hence there would be less tendency (than in other situations 
where a concentrated force is applied) for the energy to be scattered into different 
wavelengths. In  other words we suggest that the neighbourhood of a sharp wave 
crest is precisely the place to apply a localized horizontal stress, if momentum or 
energy are to be added smoothly; and, because of the pressure difference induced by 
air-flow separation a t  a sharp crest, this is precisely the place where wave-generating 
forces are indeed likely to be applied, 

Similarly in the case of wave decay. In a whitecap, the flow is evidently strongly 
sheared, and the density of the whitecap may be less than that of unaerated water, 
as is found in hydraulic jumps. Hence the whitecap may be considered as a super- 
posed mass ‘surf-riding’ on the fluid below, and replaceable in some respects by a 
normal pressure distribution. The fact that under some conditions a progressive wave 
can support a ‘spilling ’ whitecap while progressing smoothly in a quasi-steady state 
may be attributed to the fact that the whitecap is situated not far from the level 
of action of the wave. 

Of course this discussion implies that the resulting applied force acts horizontally. In  
fact, if the whitecap remains in contact with the wave, the reaction between it and 
the wave a t  subsequent times will have a vertical component.? However the downwards 
vertical component of the applied force must be balanced by an increased pressure at 
greater depths, say a wavelength or more below the surface, and this increased 
pressure will be more or less uniformly distributed with regard to horizontal distance. 
Then it can be seen that, provided that the vertical component of the surface force is 
symmetrically distributed with regard to the wave crest, it will have zero moment 
about a point below the crest. Hence the total couple exerted by the vertical component 
of the additional forces will vanish. 

Gerstner waves. When the previous arguments are applied to a Gerstner wave, in 
which the flow is no longer irrotational but has a strong negative vorticity, the results 
are somewhat different. In  such a theoretical wave (see Lamb 1932,s 251) the particles 

t I n  the analogy with the rolling disk, it is as though the mass thrown off remained in contact 
with the disk, and were supported by it at a point immediately above the disk’s centre. There 
is consequent loss of energy to the whole system, though momentum is conserved. 
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move in closed circular orbits and their mean forwards drift vanishes precisely. The 
contribution to the Lagrangian angular momentum from the particle orbits is therefore 
positive (and equal to 3a2c, approximately) while the total linear momentum I 
vanishes. The level of ya is therefore infinite. Although the Gerstner wave has a 
limiting form (with a cusp at the crest) nevertheless it is evidently impossible for the 
wave surface ever to reach the level of action, which is infinitely high. We may infer, 
first, that it  must be extremely difficult to generate a steady Gerstner wave by pressure 
forces applied a t  the surface. Secondly, a Gerstner wave, even when breaking, will 
not support a whitecap. 

These remarks serve to emphasize still further the unnatural character of a Gerstner 
wave, in which the surface shear is strongly negative. The arguments may be general- 
ized to waves on a shearing current of any form. Then it is easy to see at  least quali- 
tatively that waves on a shearing stream with a positive vorticity must have a lower 
level of action than those on otherwise still water. Hence they will tend to break a t  a 
lower wave amplitude. The same conclusion has been reached on other grounds by 
Banner & Philips (1974). 

Spin and action density. Naeser (1978) has pointed out that the orbital ‘spin’ or 
angular momentum of particles in a wave train has the same dimensions as wave 
action. This can most easily be seen from the definition of action as the line integral of 
the momentum (Lamb 1929, 8 104). The dimensions of wave action are therefore 
mass x velocity x length, similar to angular momentum. W-e have also for low waves 

2, = $a2c = Ec/2g, (10.1) 

where E is the energy density $ga2. But in deep-water waves, for example, v2 + gk 
or uc = g; hence 

22, = E / v ,  (10.2) 

the well-known expression for the action density (Hasselmann 1963). It follows that, 
since in wave-wave interactions and also in wave-current interactions the total wave 
action is conserved, the same must be true of the Lagrangian angular momentum 
density also. 

However it is important that the two quantities (action and angular momentum) 
should not be confused. In the case of irrotational waves, for example, the orbital 
angular momentum involves multiplying the momentum by a distance normal to the 
path of the particle, and not along it, while the contribution from the Stokes drift, 
which is of the same order of magnitude, again involves a different length. 

In  this paper, detailed calculations have been given so far only for surface waves in 
deep water. Similar arguments and methods of calculation will also apply, with 
suitable modification, to solitary waves and to internal waves in an unbounded, 
stratified A uid. However for periodic waves in water of finite depth the argument is less 
attractive since the appropriate frame of reference appears not to be uniquely 
determined. 

Appendix A. The precise evaluation of A(0) 
The general expression (2.5) for the angular momentum may be written 
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and by a transformation similar to (4.6), but with # in place of P, this becomes 

LA = -IB + Y 2 )  a# (A 2) 

where B is the boundary of R. That is to say 

@ being the velocity potential of the steady flow as seen in a frame moving with the 
phase-speed c.  But, since x is single-valued, 

n 

the contribution from the term y2 along the bottom is 

- /+h2d# = -+h2[#]:=, = 0 

by equation (2.2). Since the motion is periodic in x ,  the two lateral boundaries x = f (y)  
and x = f (y)  + L contribute 

So we are Ieft with 

Let us take the case when the lateral boundaries correspond to @ = constant, say 
@ = a,, and @, + cL. Then in the first two integrals the limits of integration are the 
same. Moreover 

n L 

J, xd# = J, xcdx = &(x:-x;), 

All together then we have 

A = - - -  vc J'" ((.: - x i )  +y:}d@ - &($ -.;,. 9 0 

Now, substituting for x and y the Fourier series (6.11) and recalling (6.13), we obtain 

where 
1 @o+cL m cosh ( n k Y s / c )  - 1 

sinh (nkYJc)  R = z/Qo ( @ / c )  C ansin (nk@/c)  
n = l  

(A 11) 
c m  

= - - 2 5 cos (nk@,/c)  tanh (nkYs/2c)  
k , = l  n 

and 
m m 

S = (c2t - a,) C a, sin (nk@,/c) tanh (nkYs/2c)  + +c a: sin2 (nk@,/c).  
n= 1 n = l  

(A 12) 
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The crest-to-crest angular momentum corresponds to @,, = 0, giving S = 0 identically. 
So we have 

and in particular for deep water when kYs/2c = - co we have 

as was to be proved. 

Appendix B. Historical note 
The angular momentum of water waves seems to have been first adduced by 

V. V. Shuleikin (1954, 4 4) in connection with the generation of waves by wind. 
However, it  is clear that he did not include in his estimates the angular momentum 
of the Stokes drift. 

Wave-spin has been considered from a very general point of view as an antisymmetric 
tensor by Jones (1973, equation 28b). What we have called the ‘orbital angular 
momentum’ he has called the ‘wave-spin density’. He assumes however that a 
particle has no average linear momentum, so that the contribution from the mass- 
transport (that is, the moment of the mean linear momentum) would be negligible. 
We have seen that this is not justified.? 

The author’s brother (H. C. Longuet-Higgins, personal communication) drew his 
attention to the fact that the contribution of wave crests and troughs to the Eulerian 
angular momentum tended to cancel out. This led the author to the more accurate 
evaluation of this quantity given in 0 5. Later H. Naeser (1978) suggested the equiva- 
lence of wave spin and wave action, an idea which is discussed in €J 10. 

The present paper was begun in Cambridge in early 1979 and completed during a 
visit to the University of Florida at Gainesville, where the numerical computations 
were done. The author is much indebted to Dr K. Millsaps and members of the Depart- 
ment of Engineering Sciences for their hospitality and assistance. 
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